

Standards for Interoperability

Tim Benson Abies Ltd, 11 December 2012

Outline

- 1. Definitions
- 2. Why we have to use standards
- 3. Why interoperability is hard
 - What helps
- 4. Syntax
 - HL7 V2, V3, CDA and FHIR
- 5. Semantics
 - LOINC and SNOMED CT

The Book

- "The second edition is even better than the first"
 - Ed Hammond

Standards Definition

- A standard is a <u>document</u>, established by <u>consensus</u> and approved by a <u>recognised</u> <u>body</u>, that provides, for common and repeated use, rules, guidelines, or characteristics for activities or their results, <u>aimed at the optimum degree of order in a given context</u>
 - > ISO 2004

Benefits of Standards

- Reduce Cost
- Reduce Risk
- Competition (avoidance of lock-in)
- Change control (real costs of upgrades)
- Quality (levelling up)
- Testable for correctness

Eight "C"s Criteria

- Comprehensive within scope
- Complete in detail
- Coherent internally
- Consistent with other standards
- Comprehensible to users and developers
- Composed from reusable elements
- Conformance-testable
- Computer-readable and traceable

Standards

- "The nice thing about standards is that you have so many to choose from."
 - Andrew Tanenbaum
- Standards are there to help
- Most standards are over-specified
 - Long
 - Complex
 - Arcane jargon
- Need agreed "profiles"
 - the minimum viable product for your use case

And lots of SDOs ...

- HL7
- IHTSDO
- DICOM
- GS1
- ISO TC215
- CEN TC251
- IHE
- Continua

Interoperability Definition

- Interoperability is the ability of two or more systems or components to exchange information and to <u>use the information that</u> <u>has been exchanged</u>
 - > IEEE 1990

Types of interoperability

Technical

- Move data from A to B
- Domain-independent
- Information theory
- Now commodity

Semantic

- A and B understand data in the same way
- Domain specific
- What HL7 mainly does
- Use of codes and identifiers

Process

- Business systems at A and B interoperate
- Business process-specific
- Requires re-engineering
- Generates all the benefit

Number of paths = $(N^2-N)/2$

An Exponential Problem

No of Nodes	N	2	10	100
No of links without standard	(N ² -N)/2	1	45	4,950

Webs of Care – Breast Cancer

Webs of Care – Alzheimer's

MedCom -The Danish Health Data Network Messages/Month

Why is it hard?

The Rosetta Stone

- One Message
- Three renderings
 - Hieroglyphic
 - Greek
 - Demotic
- EDI
 - Sender system
 - Wire format
 - Receiver system

How to avoid errors

- Complexity
 - Avoid long arcane specifications
- People
 - Minimise the number of people who need to understand them
- Choices
 - Eliminate optionality
- Volume
 - 99.9999% (sigma-6) accuracy means 1,000 errors per billion messages

Sources of problems

- Every system has its own language
 - Developers often do not recognise this
 - Aggravated by IP and deliberate "lock-in"
- Developers and Users talk but fail to communicate
 - "Both believed they were in perfect agreement"
- Few people understand the whole business process
 - Especially integration between providers and specialties
- Managers try to re-use what they have
- Heterogeneity of clinical practice
- Ever-changing regulations
 - Major differences between jurisdictions

The Trouble with English

- Synonyms
- Homonyms
- Local dialects
 - Specialty specific
 - System specific
 - Location specific
- Neologisms (inventing new terms)

The Communication Pyramid

Diagrams: part of the solution

- Used by engineers, architects and navigators
- Conceptual design specification
 - Understandable by everyone
- Implementation specification
 - Only understood by technologists

Human-Human Communication

Specifications in human-human communication

Ubiquitous Language

- A language structured around the domain model and used by all team members to connect all of the activities of the team with software
 - Eric Evans. Domain driven design: tackling complexity in the heart of software. Addison-Wesley, 2004

CDA Document metaphor

- Wholeness
- Persistence
- Authentication
- Stewardship
- Human readability

Document Metadata

- What
 - content, purpose, status
- When
 - created, about
- Who
 - about, from, to,
- Where
 - origin, storage

Constraint or extension

- Most HI standards are based on constraint
 - Define the universe, but only use what you need
- Multiple constraints
 - Information model elements and multiplicities, data types, vocabulary
- The Kernel principle
 - Define a small core and extend as required within clear rules
 - UNIX is an exemplar
 - FHIR (Fast Health Interoperability Resources)

Desiderata for clinical terminology

- 1. Content completeness
- 2. Concept orientation
- 3. Concept permanence
- 4. Meaningless identifiers
- 5. Polyhierarchy
- 6. Formal definitions

- 7. Reject NEC
- 8. Multiple granularities
- 9. Multiple consistent views
- 10. Context representation
- 11. Evolve gracefully
- 12. Recognize redundancy
 Source J Cimino 1997

Reference Terminology Example

Finally ...

- Syntax
 - HL7 standards
- Semantics
 - Vocabulary
- For SDOs to separate Syntax and Semantics is deeply unhelpful
- It simply transfers the problem onto the implementer.

Q + A